Abstract
In this study, a novel temperature-sensitive material, Sr3Y2Ge3O12:Bi3+,Sm3+ phosphor, was successfully synthesized by a solid-state reaction method. Under 376 nm light excitation, the as-prepared phosphor presents both blue emissions of Bi3+ and orange red emissions of Sm3+ due to energy transfer from Bi3+ to Sm3+. Owing to the significant difference in thermal quenching properties and the distinguishable emission between Bi3+ and Sm3+ ions, the temperature sensing performance of the prepared phosphor was evaluated by measuring the fluorescence intensity ratio (FIR) of Sm3+versus Bi3+. More importantly, for the first time, it was found that the absolute and relative sensitivities of Sr3Y2Ge3O12:Bi3+,Sm3+ could be tuned by changing the concentration of activators to determine the optimal temperature measurement conditions, which opened up the possibility of improving the performance of fluorescence temperature sensing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.