Abstract

PurposeIn the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads to seal failure and MRF deterioration. The purpose of this study is to investigate the mechanism of temperature rise of MRF film under the action of the three-field coupling of the flow field, temperature field and magnetic field.Design/methodology/approachThe fluid film was simplified as a Couette flow in this work to simulate the temperature change in the sealing fluid film under different working conditions. The corresponding experiment for test the temperature rise was also carried out, and the temperature of the characteristic point of the stationary ring was measured to validate the model.FindingsThe results show that the temperature rise is mainly affected by the rotational speed, magnetic field strength and fluid film thickness. The magnetic field enhances the convective heat transfer in the MRF film. The thinner the fluid film, the more frictional heat generated. The MRF film reaches its maximum temperature at the contact with the end face of rotating ring due to frictional heat.Originality/valueA method for temperature rise analysis of MRF fluid sealing films based on Couette flow is established. It is helpful for the study of liquid film frictional heat in MRF seals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.