Abstract

The temperature rise and heat flux induced by a CW (continuous wave) double-Gaussian-distributed laser beam have been investigated numerically in a semi-infinite substrate. The temperature-dependent thermal conductivity and surface reflectivity of the substrate material are incorporated in the calculation model. The results show that the double-Gaussian-distributed laser beam can provide a high temperature rise in a narrower region with low local heat flux, which implies low thermal stress at the irradiated area. One can change the temperature profile by manipulating the radiuses and powers of two portions in the double-Gaussian-distributed laser beam. The power of the individual beams in the double Gaussian can be used to control the resulting temperature and heat fluxes during processing of the electronic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call