Abstract

Starch is a natural polymer with a relatively simple structure and limited solubility in water. Kraft lignin (KL) is a complex biopolymer obtained as a by-product from the delignification of wood and grasses. The present work reports developing a temperature-responsive high molecular weight macromolecule from crosslinking KL and starch (KLS). The NMR and XPS analyses quantified the changes in the aromatic and anhydroglucose units of KL and starch, observing a higher content of C-O-C bonds, which confirms the presence of glycerol ether cross-linkages between starch and KL in KLS. The rheological analysis of KLS dispersions revealed the formation of a thermo-responsive structured network. The temperature-dependent water solubility and rheological characteristics of KLS were related to the presence of hydrophilic starch chains, crosslinking degree, and physicochemical characteristics of KL. The incorporation of KL and ether crosslinks increased the thermal stability of KLS. Because of its multiple functional groups and large molecular weight (3.6–4.2 × 105 g/mol) that was arranged in an extended globular shape, KLS-5 formed a gel-like structure after a heating-cooling treatment. Overall, the results confirmed that incorporating lignin in starch would fabricate sustainable materials with potentially altered applications, such as temperature-responsive hydrogels and films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call