Abstract

Cationic block copolymers have been regarded as promising alternatives to the use of viral vectors for gene delivery. In this work, poly(N-isopropylacrylamide)n-block-poly((3-acrylamidopropyl)trimethylammonium chloride)m (PNIPAAMn-b-PAMPTMA(+)m) block copolymers with n=48 or 65 and m=6, 10 or 20 were synthesized and evaluated in terms of their potential for in vitro transfection of HeLa cells. These block copolymers collapse above a phase transition temperature, allowing the entrapment of the DNA molecules they are adsorbed to. The transfection efficiency increased with polymer concentration and was higher in the presence of a long PNIPAAM block and for a short charged block. In general, increasing the length of the charged block decreased the transfection efficiency. Additionally, polymer-DNA complexes (polyplexes) formed at lower polymer/DNA charge ratios caused lower cell toxicity levels. All polymers were shown to efficiently protect the DNA, even when they were present at low concentrations. At 37°C, the polyplexes mostly formed structures with size ranging from 100 to 500nm. The results also showed that the thermoresponsive contraction of PNIPAAM causes the charged block segments to be pressed out to the surface. The formation of compact structures seems to be a key factor in achieving high transfection efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.