Abstract

ABSTRACTAqueous solutions of a series of monodisperse poly(N‐isopropylacrylamide)s end‐labeled with n‐butyl‐1‐pyrene at one or both chain ends (Pyn‐PNIPAMs with n = 1 or 2) were studied by turbidimetry, light scattering, and fluorescence. For a given polymer concentration and heating rate, the cloud point (Tc) of an aqueous Pyn‐PNIPAM solution, determined by turbidimetry, was found to increase with the number‐average molecular weight (Mn) of the polymer. The steady‐state fluorescence spectra and time‐resolved fluorescence decays of Pyn‐PNIPAM aqueous solutions were analyzed and all parameters retrieved from these analyses were found to be affected as the solution temperature passed through Tc, the solution cloud point, and Tm, the temperature where dehydration of PNIPAM occurred. The trends obtained by fluorescence to characterize the aqueous Pyn‐PNIPAM solutions as a function of temperature were found to be consistent with the model proposed for telechelic PNIPAM by Koga et al. in 2006. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 308–318

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.