Abstract

A carbon black (CB)/polypropylene (PP)/ultrahigh-molecular-weight polyethylene (UHMWPE) composite with a segregated structure was fabricated by using binary polymer granules as matrices. In preparation, an ethanol-assisted dispersion method was employed to disperse CB particles on the surface of the two polymer granules. The segregated conductive network was then constructed by hot compaction based on the volume exclusion effect of the polymer matrices. The conductive composite shows an ultralow percolation threshold of 0.34 vol.%. In temperature-resistivity test, a double positive temperature coefficient (PTC) effect was observed. In addition, the negative temperature coefficient (NTC) effect was eliminated significantly. These interesting temperature-resistivity behaviors were ascribed to the introduction of the binary polymer matrices and the mobility limitation of CB particles located at the PP/UHMWPE interface. These characteristics were probed by in situ morphology observation in heating process. The present paper provides a novel route for preparing conductive composites with an ultralow percolation threshold, a wider PTC region, and a zero NTC effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call