Abstract

The heteropteranPyrrhocoris apterus(L.) does not survive freezing of its body fluids; there is a good correlation between values of survival at subzero temperatures and the supercooling point (SCP), i.e., the temperature at which body fluids start to freeze. The decrease of the SCP and thus the increase in cold hardiness is regulated by photoperiod and temperature. The relative importance of these factors depends on the physiological state of the insect. The SCP is about −7°C at the onset of prediapause and a decrease of about 4–5°C is associated with the development of the diapause syndrome in adults; these processes both are induced by a short-day photoperiod with temperature playing a secondary role. The induction of the diapause syndrome is a prerequisite for the subsequent decrease of the SCP by about 5–6°C during cold acclimation. An intermediate temperature of 15°C, or fluctuating outdoor temperatures and short-day photoperiods, are more suitable for the decrease of SCP than 5°C in continuous darkness. The sensitivity to photoperiod gradually disappears during the development of diapause; after the termination of diapause around the winter solstice the SCP irreversibly increases at a high temperature of 26°C even if exposed to a short-day photoperiod. The SCPs of hemolymph, gut, fat body, and gonads were compared to whole-body SCP. The gut was identified as the primary site of ice nucleation because its SCP value was very similar to the value for the whole body in both short-day and long-day insects. The SCPs of other organs, including the hemolymph, were always lower than the whole body SCP. Food was not a source of ice nucleating agents because the SCP of freshly ecdysed adults remained high after 2 weeks of starvation. In contrast, feeding was a prerequisite for the decrease of the SCP during prediapause. In postdiapause insects, the SCP increased at high temperatures in spite of the absence of food.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.