Abstract

High Temperature Superconducting (HTS) transformers are one of the potential technologies for power systems connected to offshore wind farms and stand-alone and bulk power grids. In such systems, proper fault performance of any electric device including HTS transformer is a vital factor to ensure a safe, and reliable delivery of electric power as well as power quality in electric grid. Short circuits can increase the risk of developing hot spots in superconducting tapes and as a consequence burning the windings in severe fault current cases. One important way to limit the temperature increase of the superconducting winding during short circuit is to increase the heat transfer of the liquid nitrogen (LN2) during fault. In this paper, the impact of increasing the turbulence of the inlet fluid on the Hot Spot Point (HSP) temperature of superconducting windings of a 120 kVA HTS transformer was investigated during a short circuit fault. To increase turbulence and consequently, heat transfer, a device known as Perlator was used. Then, the impact of the Perlator structure and the location and angle of inlet valves were investigated on the HSP temperature of an HTS transformer, under 65 K and 77 K operating temperatures. The results indicated that by using a Perlator and adjusting valve number and location in the cryostat structure, the HSP temperature of the HTS transformer under the fault current was significantly reduced by about 46.2 K which can be vital to save the transformer from failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call