Abstract

Numerical simulations are employed to consider the problem of determining the granular temperatures of the species of a homogeneous heated granular mixture with a power-law size distribution. The partial granular temperature ratios are studied as functions of the fractal dimension D, the restitution coefficient e, the rescaled viscosity time, the average occupied area fraction φ, the total particle number N and the number fraction. Different species of particles in a power-law system typically do not have the same mean kinetic energy, namely the granular temperature. It is found that the extent of nonequipartition of kinetic energy is determined by the fractal dimension D, the restitution coefficient e and the rescaled viscosity time, while is insensitive to the total particle number N, the area fraction φ and the number fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call