Abstract

A numerical procedure has been applied for investigating the temperature distribution in a smooth tread bias tire of a light truck, operated under different speeds, pneumatic pressures, and loading conditions. Prior to simulation by the finite element analysis, two separate sets of testing, namely dynamic mechanical testing and material testing, have been conducted in relation to the evaluation of hysteresis (H) and total strain energy (Used), respectively. Hysteresis loss energy is given as (H × Used) and considered to relate directly to heat generation rate. Temperature rise is assumed to be due to the energy dissipation from periodic deformation. This dissipation of energy may be equated to be the primary heat generation source. Hysteresis energy loss is used as a bridge to link the strain energy density to the heat source in rolling tires; temperature distribution of rolling tires may be obtained by the steady-state thermal analysis. The above procedure has been shown to facilitate the simulation of the temperature distribution in the rolling tire.An efficient computational process is being introduced to decrease the time for coupled 3D dynamic rolling simulation of tire. Temperature rise under different conditions is discussed with reference to the results of other published studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.