Abstract
Novel nanosized biomass-based pH- and temperature-responsive cellulose nanofibers (TOCNF-HPEI-IBAm) were designed and prepared by grafting hyperbranched polyethylenimine (HPEI) modified with isobutyramide (IBAm) groups (HPEI-IBAm) onto carboxylated cellulose nanofibers (TOCNFs). The as-prepared TOCNF-HPEI-IBAm possessed excellent biocompatibility and pH- and temperature-responsive properties. TOCNF-HPEI-IBAm showed a rapid wettability conversion from hydrophilic (WCA = 41.1°, WCA = 70.7°) to hydrophobic (WCA = 147.3°, WCA = 142.2°) in response to changes in pH and temperature from acidic conditions to alkaline conditions and from lower to higher temperatures. In addition, it possesses strong antibacterial activity against Escherichia coli and Listeria (Eb ≥ 97%). The amount of DOX loaded in TOCNF-HPEI-IBAm was 642.52 mg/g, and the maximum amount of DOX released was 39.30% at pH = 3.0 within 9 h. Furthermore, the dual interactions stimulus-responsive mechanism was revealed to be attributed to the expansion and collapse of the molecular chains of TOCNF-HPEI-IBAm in response to temperature and pH through mutual promotion and inhibition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.