Abstract

We propose a 4-velocity unidimensional discrete Boltzmann model with two different speeds 2, 1 and two different masses 1, 2. With the three conservation laws of mass, momentum, and energy satisfied, we can introduce a nontrivial temperature. First, we determine the similarity shock waves satisfying physical properties: positivity, shock stability, inequalities of the subsonic and supersonic flows, increase or decrease of both mass and temperature across the shock. It results that either the speed of the shock front is higher than the speed 1 of the slow particles and the shocks are compressive or less than 1 and the shocks are rarefactive. We observe overshoots of the temperature, across the shock, with bumps higher and higher as the shock front speed increases. Second, we study the (1+1)-dimensional shock waves. They represent the superposition and collision of two compressive shocks traveling in opposite directions and we observe temperature overshoots for not too large times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.