Abstract

A systematic study of temperature oscillations in turbulent thermal convection was carried out in two aspect-ratio-one convection cells filled with water. Temperature correlation functions and local velocity fluctuations were measured over varying Rayleigh numbers and spatial positions across the entire cell. These measurements fully characterize the spatial structure of the temperature oscillation and reveal the mixing and emission dynamics of the thermal plumes near the conducting surface. A sharp transition from a random chaotic state to a correlated turbulent state of finite coherence time is found when the Rayleigh number becomes larger than a critical value Ra(c) approximately equal 5 x 10(7). Above Ra(c) the measured temperature correlation functions show a well-defined oscillation with a finite coherence time. The oscillation period is found to be twice as large as the cell crossing time. The experiment demonstrates how the thermal plumes in a closed cell organize themselves both in space and time and generate coherent oscillations in a turbulent environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.