Abstract

Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea-level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature-modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic-rich soils will respond to climate warming. Here, we actively increased aboveground plant-surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape-scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.