Abstract

A model in which a projectile like fragment can be simply regarded as a remnant after removal of some part of the projectile leads to an excited fragment. This excitation energy can be calculated with a Hamiltonian that gives correct nuclear matter binding, compressibility and density distribution in finite nuclei. In heavy ion collisions the model produces a dependence of excitation energy on impact parameter which appears to be correct but the magnitude of the excitation energy falls short. It is argued that dynamic effects left out in the model will increase this magnitude. The model can be directly extended to include dynamics but at the expense of increased computation. For many calculations for observables, a temperature is an easier tool to use rather than an excitation energy. Hence temperature dependences on impact parameter in heavy ion collisions are displayed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.