Abstract

Solar-light-driven photoelectrochemical that can utilise water for high-performance artificial photosynthesis for low-cost green hydrogen fuel production. However, the interaction of photoanode with water is crucial to its heterogeneous water oxidation for sustainable fuel production for the replacement of fossil fuels. Here, we report experiment investigations of photoelectrode with temperature for solar energy conversion. These measurements revealed that a rise in temperature affects the catalytic generation of hydrogen in three routes, viz., minimising the required energy for water splitting, reducing bandgap energy and mitigating the resistance at the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.