Abstract

BackgroundAn increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible.MethodsThree female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion.ResultsAverage swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects.ConclusionsAn esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).

Highlights

  • An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, in smaller patients with high surface to mass ratios

  • The device is similar in size to large orogastric tubes, and incorporates internal channels to allow a closed circuit of water provided by an external heat exchanger, with a central core serving as gastric access (Figure 1)

  • Initial mathematical modeling data [37] and animal data [38] have shown good results in larger, adult-sized models; given the additional challenges of modulating temperature in smaller patients with larger surface to mass ratios, we sought to evaluate the ability of this device to influence temperature in a pediatric swine model, hypothesizing that clinically significant modulation in temperature would be possible

Read more

Summary

Introduction

An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. The challenge of maintaining operative normothermia during procedures on patients with high surface to mass ratios, such as pediatric patients, is significant, and many approaches are being developed to address this need [34,35,36]. Initial mathematical modeling data [37] and animal data [38] have shown good results in larger, adult-sized models; given the additional challenges of modulating temperature in smaller patients with larger surface to mass ratios, we sought to evaluate the ability of this device to influence temperature in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases) would be possible

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.