Abstract

More recently, loading polymer-ligand onto the surface of gold nanoparticles (AuNPs) as nanozymes has gained considerable attention. However, the efficient modulation of the nanozymes catalytic capability depending on external stimuli remains challenging. Herein, utilizing the thermo-responsive poly(N-isopropyl acrylamide) (PNIPAM) as a stabilizer and a reducing agent to make PNIPAM@AuNPs, we reported a straightforward and efficient protocol for modulating the peroxidase-mimic catalytic capability of PNIPAM@AuNPs in oxidation of 3,3′,5,5′-tetramethyl benzidine (TMB)–H2O2 system by change of environmental temperature. More hydroxylradicals yielded and surface confinement effect induced by the coiled PNIPAM chains at high temperature could further significantly boost the nanozymes catalytic capability. In the presence of glutathione, the generation of oxidized TMB was inhibited and the absorption intensity of the reaction system decreased at 650 nm. The color-fadingproperty provided a highly selective assay for visualized and quantitative test of glutathione ranging 1.0 ~ 17.0 μM (R2 = 0.993), the limit of detection was 0.8 μM. Moreover, the proposed method exhibited a promising application in analysis of rat serum glutathione following an intravenous injection. The strategy supplies a facile guideline for preparation of stimuli-responsive polymer@AuNPs with improved peroxidase-mimic catalytic activity toward application in real living bio-systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.