Abstract

The development and application of a one-dimensional heat transport model in highly transient streams governed by unsteady flow is described here. The resultant framework consists of two modules called the hydrodynamic and heat transport modules. In the hydrodynamic module, the hydraulic variables such as flow depth and velocity are simulated. Based on this information, the heat transport module is executed to calculate temperatures. A new approach—coupling heat transport in the surface water and diffusion in the sediment zone—is developed and applied for this module. In this approach, an interaction term accounts for the flux of heat energy between the water and sediments, which affects the distribution of water temperature in clear and shallow streams. Implicit finite difference methods called the Preissmann four-point and the Crank-Nicolson schemes are used to solve each module. Application of this framework demonstrates that the model effectively simulates the hydraulic variables and temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.