Abstract

An incomplete thermal cycle upon heating in a shape memory alloy (arrested at a temperature between A s and A f ) induced a kinetic stop in the next complete thermal cycle. The kinetic stop temperature is closely related to the previous arrested temperature. This phenomenon is named temperature memory effect (TME). In this article, the TME in two-way shape memory TiNiCu and TiNi springs was investigated by performing either a single incomplete cycle, or a sequence of incomplete cycles. N points of temperatures could be memorized if N times of incomplete cycles on heating were performed with different arrested temperatures in a decreasing order. The capability is enhanced by performing repetitive incomplete cycles with the same temperature, and the TME can be eliminated by appropriate complete transformation cycle. The TME is originated from the relaxation of both the strain energy between martensite and coherent strain between parent phase and martensite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.