Abstract

Recent work demonstrates that habitat conditions exert striking effects on symbiont performance by mediating trade-offs in plants, AM fungi and environmental interactions. However, how local temperature conditions influence the functional diversity of mycorrhizal symbioses and the genetics of coexisting AM fungi at the local scale remain unclear. In the present study, we conducted a reciprocal inoculation experiment to explore the performance of sympatric associations against allopatric associations under contrasting temperatures and the AM fungal community in colonized roots. No local adaptation of plant biomass was found under both temperature conditions investigated, but a consistent local versus foreign effect was found in AM fungal performance. The temperature and the origin of the inoculum relative to the plant origin were important in explaining symbiotic function. Correspondingly, the community structure and Nearest Relatedness Index of the AM fungal community of the root symbiont varied with inoculum source, and assemblages with more closely related taxa led to a decline in plant biomass and stronger disequilibrium among AM fungi in roots. Our findings suggest that functional divergence exists in naturally coexisting communities of AM fungi from contrasting climatic origins, and fungal relatedness is an important driver of plant growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.