Abstract
We demonstrate an approach to measure average temperature changes in deployed optical fiber networks using Optical Time Domain Reflectometry, OTDR, at the single photon level. In this article we derive a model relating the change in temperature of an optical fiber to the change in time of flight of reflected photons in the fiber in the range -50 → 400 °C. A setup is constructed to validate this model utilizing a pulsed 1550 nm laser and a Superconducing Nanowire Single Photon Detector, SNSPD. With this setup we show that we can measure temperature changes with 0.08 °C accuracy over km distances and we demonstrate temperature measurements in a dark optical fiber network deployed across the Stockholm metropolitan area. This approach will enable in-situ characterization for both quantum and classical optical fiber networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.