Abstract

Implementation of an integratable ultrasonic sensor network with associated cable connection for high temperature monitoring applications is demonstrated through application of a three-element ultrasonic sensor network for temperature measurement in a turbine stator assembly. The sensor network is composed of a piezoelectric composite film deposited on a titanium substrate with a sol-gel technique and three top electrodes deposited on the piezoelectric film. The sensor network is glued onto a selected area of the stator assembly in such a way that three subareas with different wall thicknesses are probed individually by each of the sensing elements. The ultrasonically instrumented stator assembly is first heated in a furnace to different temperatures. At each temperature and for each probed location the transit time of ultrasonic waves through assembly wall thickness is measured. Then a relationship between transit time and wall temperature is established. In a subsequent experiment, the stator assembly is heated up to 200 °C and then let cool down while the transit time in the assembly wall is being measured continuously. By using the transit time versus temperature relationship obtained earlier, the heating and cooling rates at the three probed locations are determined and then compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.