Abstract

The authors use high-resolution charge-coupled device based thermoreflectance to derive two dimensional facet temperature maps of a λ=1.55μm InGaAsP∕InP watt-class laser that has a large (>5×5μm2) fundamental optical mode. Recognizing that temperature rise in the laser will lead to refractive index increase, they use the measured temperature profiles as an input to a finite-element mode solver, predicting bias-dependent spatial mode behavior that agrees well with experimental observations. These results demonstrate the general usefulness of high-resolution thermal imaging for studying spatial mode dynamics in photonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.