Abstract

The binding of formate ion to sperm whale metmyoglobin after a temperature-jump is monophasic and not affected by organic phosphate; the Hill coefficient obtained from equilibrium measurements is unity, and there is internal consistency between equilibrium and kinetic results. Formate binding to stripped human methemoglobin, on the other hand, is biphasic. The two relaxation phases can be attributed, on the basis of their equal relaxation amplitudes, to the different kinetic properties of both types of chains. Equilibrium measurements yield a single binding constant. Thus, formate belongs to the class of high-spin ligands which show no binding specificity but strong kinetic heterogeneity for α- and β-chains. There is, however, a lack of consistency between equilibrium and kinetic results, indicating that a reaction scheme which considers only ligand binding to α- and β-chains appears not to be fully adequate. Organic phosphates exert a drastic influence on the kinetics but not on the thermodynamics of ligand binding. In the presence of inositol hexaphosphate the relaxation spectrum is characterized by more than two relaxation processes: A very fast phase—about an order of magnitude faster than the fast process in stripped methemoglobin—appears with high amplitude. The slow relaxation process, however, is only slightly affected. The binding constant of formate obtained from equilibrium measurements is only little changed and the Hill coefficient is 0.97 both in the presence and absence of the phosphate. The phosphate-induced kinetic changes indicate that functionally significant structural changes are introduced in the tertiary structure of one type of chains, presumably the β-chains, to which inositol hexaphosphate is bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.