Abstract

The distribution patterns of C4 and C3 grasses in relation to climate have attracted much attention, but few studies have examined grass distributions along tropical elevation gradients. Previous studies identified either temperature, precipitation, or both variables as the major climatic factor(s) driving these distributions. Here we investigated relative dominance of C4 grasses in relation to climate along five elevation gradients in Hawai‘i. The transition temperature between C4 and C3 BEP (Bambusoideae, Ehrhartoideae, and Pooideae) grasses (where their relative dominance is equal) was determined; in our study, the subfamily Bambusoideae was not included. A worldwide synthesis of previous studies testing climatic factors and transition temperatures associated with C4 and C3 grass distributions was also carried out. Mean July maximum temperature was significantly correlated with C4 dominance along all elevation transects in Hawai‘i, while precipitation was only correlated along three transects when precipitation was correlated with temperature. A spatially explicit multiple regression model indicated that C4 relative cover was best explained by temperature. Temperature appears to be the major climatic factor shaping distribution patterns of C4 and C3 BEP grasses in Hawai‘i. According to the worldwide analysis, temperature primarily influenced grass distribution patterns more often in temperate studies (70%) than in tropical studies (45%). Degree of correlation or covariance between temperature and precipitation was rarely reported in previous studies, although this can strongly affect conclusions. C4-C3 BEP transition temperatures (mean July maximum) ranged from 18 to 21 °C in Hawai‘i; these transition temperatures are lower than those reported in temperate localities (26–31 °C), but similar to transition temperatures for other localities at tropical latitudes (21–22 °C). A warming climate is likely to shift C4 grass dominance upward in elevation, threatening higher elevation native communities by perpetuating a grass–fire cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call