Abstract

The effective width of the moving heat source is presented and the shape of the grinding block is simplified in order to use the traditional heat source model in modelling flat grinding with a cup wheel. Both triangular and rectangular heat source models are presented and compared with experimental results. The heat transfer process, the end-face temperature of a single wear particle, and the one-dimensional heat transfer model are integrated to study the heat flux into the workpiece. The energy partition ratio is obtained under conditions of different grinding parameters in order to make the temperature model precise. The feasibility of the temperature model is validated by experimental results, and the influence of grinding parameters on the grinding temperature is also analysed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.