Abstract

Native nitrogen is released when soils are mineralized. The amount of N released by this process depends on the amount of organic matter present and soil temperature. Cranberry (Vaccinium macrocarpon Ait.) grows in acidic soils with a wide range in organic matter content. To evaluate release of cranberry soil N at varied soil temperatures, intact soils were collected from sites that had received no fertilizer. Soils were cored and placed in polyvinyl chloride (PVC) columns 20 cm deep × 5 cm in diameter. Four different soil types, representing the array of conditions in cranberry soil (mineral, sanded organic, organic peat, and muck) were used. Additional columns of sand soil (pH 4.5) that had been pH adjusted to high (6.5) and low (3.0) were also prepared. Each column was incubated sequentially at six different temperatures from 10 to 24 °C (2.8 °C temperature intervals) for 3 weeks at each temperature, with the soils leached twice weekly to determine the amount of N release. The total amount of N in leachate was highest in the organic soils, intermediate in the sanded organic, and lowest in the sands. At the lowest temperature (10 °C), higher amounts of N were released in sanded organic and sand than in organic soils. This was attributed to a flush of mineralization with change in the aerobic status and initial soil warming. The degree of decomposition in the organic soils was important in determining which form of N predominated in the leachate. In the more highly decomposed soil (muck), most of the N was converted to nitrate. In the pH adjusted sand, high soil pH (6.5) resulted in an increase in nitrate in the leachate but no change in ammonium when compared to non-adjusted (pH 4.5) and acidified (pH 3.0) treatments. This study suggests that for cranberry soils with organic matter content of at least 1.5% little to no soil-applied fertilizer N is needed early in the season, until soil temperatures reach 13 °C. This temperature is consistent with the beginning of active nutrient uptake by roots. Soil N release from native organic matter was fairly consistent until soil temperatures exceeded 21 °C, indicating that when temperatures exceed 21 °C, planned fertilizer applications should be reduced, particularly in highly organic soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.