Abstract

We report on measurements of the lattice constants, magnetic susceptibility, LIII X-ray absorption and Mossbauer-effect on EuNiP and EuPdP, which crystallize in the hexagonal layered Ni2In structure. In both compounds the Eu valence above 510 K is 2.33. With decreasing temperature they show one (EuPdP) or two (EuNiP) first order phase transitions with a valence increase of about 0.16. At the same time thec-axis shrinks while the a-axis even increases. From Mossbauer measurements we show that the nature of the valence mixing is static. In contrast, the valence mixing in isostructural EuPtP is static at low temperatures, too, but it becomes homogeneous valent above a first order phase transition at 235 K. The behaviour of these compounds (as well as that of EuPdAs) is explained in a new model of electrostatically charged layers. In this model we can explain the temperature dependence of the lattice constants, the static valence mixing and the occurrence of preferred valences of the order 2 6/n. Together with the compression shift model of Hirst we can also understand the mechanism of the phase transitions. A comparison with EuT2Si2 compounds in ThCr2Si2 structure shows that in EuTX compounds only the electronic structure of the transition elements is relevant for the occurrence of mixed valency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.