Abstract

We report a detailed spectroscopic investigation of temperature-induced valence and structural instability of the mixed-stack organic charge-transfer (CT) crystal 4,4'-dimethyltetrathiafulvalene-chloranil (DMTTF-CA). DMTTF-CA is a derivative of tetrathiafulvalene-chloranil (TTF-CA), the first CT crystal exhibiting the neutral-ionic transition by lowering temperature. We confirm that DMTTF-CA undergoes a continuous variation of the ionicity on going from room temperature down to $\sim$ 20 K, but remains on the neutral side throughout. The stack dimerization and cell doubling, occurring at 65 K, appear to be the driving forces of the transition and of the valence instability. In a small temperature interval just below the phase transition we detect the coexistence of molecular species with slightly different ionicities. The Peierls mode(s) precursors of the stack dimerization are identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.