Abstract

The low-frequency electronic excitations of a two-dimensional graphite sheet are studied within the self-consistent-field approach. A zero-gap graphite sheet only exhibits the interband e-h excitations at zero temperature. Electrons and holes grow rapidly as temperature increases from zero. Temperature induces the intraband excitations and thus the intraband plasmons. A graphite sheet is predicted to be the first undoped system which could exhibit the low-frequency plasmons purely due to temperature. Whether such plasmons exist are mainly determined by temperature and momentum. The temperature-induced plasmons in a graphite sheet are identified as the 2D plasmons from the momentum dependence of plasmon frequencies. They quite differ from the optical plasmons in the three-dimensional graphite or graphite intercalation compounds. The inelastic light scattering spectroscopies could be used to verify the temperature-induced plasmons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.