Abstract

Abstract The isonicotinamide-malonic acid (2/1) co-crystal salt (2IN·C3) exhibits a first-order displacive structural phase transition from low-temperature triclinic P1̅ crystal structure to high-temperature monoclinic C2/c crystal structure and vice versa at the transition temperatures of 298 (1) and 295 (1) K, respectively, as determined by variable-temperature SCXRD analysis and DSC measurements. The asymmetric unit of 2IN·C3 comprises three malonic acid molecules and six isonicotinamide molecules at the low-temperature phase, and this is reduced to a half-molecule of malonic acid and an isonicotinamide molecule in the high-temperature phase. The carboxyl and pyridinium H atoms are disordered at both phases. The observed phase transition near room temperature is triggered by the molecular displacement of the isonicotinamide molecule and the syn-anti conformational transformation of the malonic acid molecule with deviation angles of 10.4 and 11.7°, respectively, which induced an energy change of 19.1 kJ mol−1 in the molecular cluster comprising a central isonicotinamide molecule and eight neighboring molecules. However, the total interaction energy of the molecular cluster of a central malonic acid molecule and eight neighboring molecules does not change significantly upon the phase transition. The molecules of isonicotinamide structures except IN·IN+·triazole ‒ form zero-dimensional finite arrays or one-dimensional chains as the primary supramolecular construct by carboxyl···pyridyl (−35.9 to −56.7 kJ mol−1) and carboxamide···carboxamide (−53.6 to −68.7 kJ mol−1) or carboxyl···carboxamide (−52.6 to −67.1 kJ mol−1) synthons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.