Abstract

Temperature-induced phase transitions in a uniaxial ferromagnetic system of spins S = 1 with competing one-particle and two-particle anisotropies are studied. It is shown that, in the case where easy-plane single-ion anisotropy dominates over easy-axis two-particle anisotropy, the transition from the paramagnetic state to a ferromagnetic state with magnetization perpendicular to the anisotropy axis is a second-order displacive magnetic phase transition. In the opposite case, where two-particle anisotropy dominates over single-particle anisotropy, the transition to a ferromagnetic state with magnetization perpendicular to the anisotropy axis is also continuous but of the order-disorder type. In a system with competing second-order one-and two-particle anisotropies, the orientational first-order phase transition can occur to a state with the magnetization directed along or perpendicular to the anisotropy axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.