Abstract

Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil (W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature; interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water. Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible, which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.