Abstract

Turnips (Brassica rapa. subsp. rapa L.) produce glucosinolates (GSLs), thioglucosides whose hydrolyzed derivatives have been shown to provide chemopreventive benefits. Two cultivars of turnips [‘Just Right’ (JR) and ‘Scarlet Queen’ (SQ)] were grown under three different temperature regimes to assess the role of temperature on GSL production in roots and shoots. When compared with low-temperature treatments, high-temperature treatments increased total and individual GSLs in a tissue- and genotype-specific manner. When compared with low-temperature treatments, total GSLs were ≈70% and 130% higher in JR shoots and roots, respectively, grown at high-temperature treatments. High temperatures also increased total GSLs in SQ shoots and roots by ≈80% and 85%, respectively, when compared with low temperatures. Gluconasturtiin (GNS, 2-phenylethyl GSL) concentration was inversely correlated with temperature with high-temperature treatments resulting in 20% and 48% less GNS than low-temperature treatments in JR and SQ roots, respectively. The indolic GSL, 1-methoxyglucobrassicin (1MGB; 1-methoxy-3-ylmethyl GSL), was the root GSL most elevated by increased temperature resulting in a 1000% increase on average in both cultivars between the low- and high-temperature treatments. These results show promise for the use of temperature to enhance the health-promoting properties of turnip because 1MGB has potent chemopreventive effects. Gene expression analysis suggests that some BrMYB transcription factor expression levels are associated with temperature-dependent changes in GSL accumulation; however, this association varies between cultivar and tissue type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call