Abstract

ABSTRACT Cemented paste backfill (CPB) has been extensively used in the mine industry to backfill underground mine cavities for ground support and/or tailings management. Once placed in mine underground cavities, the geotechnical and liquefaction response of the CPB under dynamic (cyclic) loadings is a key design concern in mine backfilling. Moreover, fresh CPB might be exposed to several sources of heat that might affect its cyclic behaviour and liquefaction potential. This manuscript presents findings of assessing the effect of backfill temperature on its geotechnical and liquefaction response to cyclic loading by using shaking table. CPB mixtures were prepared under different temperatures, poured into a flexible laminar shear box, cured (under the same mixing temperature) for 2.5 hours, and then exposed to cyclic loading using 1-D Shaking table. Obtained results illustrate that CPB prepared and cured under the temperature of 20°C can be prone to liquefaction under the studied loading conditions. However, CPB prepared and cured below a temperature of 35°C is resistant to liquefaction. These results provide better comprehension of the effect of backfill temperature on the cyclic behaviour of CPB, and thus assist in designing more efficient CPB structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call