Abstract

In this study, we investigate the effect of temperature treatment on Bovine Pancreas Trypsin (BPT) in aqueous solutions using dynamic, static and electrophoretic light scattering, fluorescence spectroscopy and circular dichroism. Static and dynamic light scattering at various solution conditions i.e. different salt content and pH, reveals that BPT aggregation is enhanced as temperature increases in a non-reversible manner. At acidic pH protein monomers are the dominant population over aggregates of globules, nevertheless the two populations co-exist at neutral and basic pH. The surface charge of the aggregates is intensified by aggregation and it is dominated by the negative residues of the protein at all pH conditions. Protein unfolding upon thermal treatment is probed by variation of the fluorescence spectrum which is caused by the exposure of tryptophan to the aqueous environment. The exposure of the hydrophobic interior of BPT upon heating may be considered as the reason of aggregation at the molecular level. Τhis study provides information that can be useful for utilizing thermal treatment protocols of BPT towards manufacturing protein-based nano formulated drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.