Abstract
Overheating in new and retrofit low carbon dioxide homes is a growing issue in the UK due to climate change and other factors, with 99% of existing housing predicted to be at medium to high risk if summer temperatures become 1·4°C warmer. A year-long field study in two residential developments in the north of England monitored housing at three different scales: two-storey houses and three- and ten-storey blocks of flats. This revealed significant temperature stratification in the staircase zone, which allows a stack effect, as well as temperature differences between dwellings depending on their location in the building, both for summer and winter conditions even in the low-rise housing. Further investigation revealed that albedo and east–west orientation also contributed to non-linear overheating. Analyses of inhabitants’ thermal comfort and security practices as well as occupancy patterns also challenge the regulatory modelling used to predict building performance. It is suggested that these additional physical as well as user factors in residential developments need further investigation and should now be considered in relation to thermal comfort modelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Civil Engineers - Engineering Sustainability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.