Abstract

The martensitic phase transformation which produces shape memory is connected with a hysteresis. Some of the applications of shape memory alloys require small hysteresis loops, other require large ones. It is therefore important to be able to control the size of the hysteresis. For that purpose three different methods were introduced in the present paper. Mechanical vibration narrowed the hysteresis loops in both NiTi and CuZnAl alloys up to 17%, while the width of the hysteresis loops in a NiTi alloy decreased 3 similar 4 times by addition of the third element Cu. With help of a special heat treatment a nearly hysteresis-free phase transformation occured in a Ti-51Ni(at.%) alloy. The size of the hysteresis is determined by the interfacial energies of the phase boundaries and these will be big, if the E-modulus and the lattice distortion are big.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.