Abstract

Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose. Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets. The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination. The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.