Abstract

We studied the effect of temperature gradients within a packed bed on the SuperCritical (SC) CO2 extraction of oil from pelletized cranberry seeds. Temperature gradients were imposed on the extractor by using different temperatures for the SC-CO2 flow and the extractor vessel wall in heating and cooling experiments (60 and 40 °C, and viceversa) for oilseed pellets and glass beads at 48 MPa. A two-phase heat transfer model and a linear-driving-force mass transfer model described temperature profiles and oil extraction curves. Overall, temperatures in the packed bed were more affected by the vessel wall than the SC-CO2 inlet condition. Extraction curves for heating and cooling experiments were between the isothermal extraction curves for 40 and 60 °C, being affected by the vessel wall temperature in the solubility-controlled period of the extraction and approaching each other after 1-h of dynamic extraction. Both heat and mass transfer models allowed a satisfactory prediction of such a behavior and represent a step forward in the prediction of SC-CO2 oil extraction course.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.