Abstract

A novel copula-based probabilistic model is proposed to establish the temperature difference analysis model for a long-span suspension bridge’s steel box girder. The key idea is to express a two-dimensional function of the temperature difference in flat steel box girder by using copulas. The maximum and minimum values of daily temperature difference model was developed using long-terms structural health monitoring data. Then, the correlation between adjacent temperature differences is investigated using five types of copulas. Akaike information criterion (AIC) is used to select an optimal model from five types of copulas, and the optimal joint function (two-dimensional function) for steel box girder’s temperature difference is established. Finally, the structure’s temperature gradient model is extrapolated for the service life of the structure by using Monte Carlo method. Moreover, this paper discusses the temperature gradient models using five types of common copulas and four types of time-varying copulas. The result shows that the t-copula is the optimal function to build the two-dimensional functions for steel box girder’s temperature difference, and the temperature model along the transverse direction can offer useful information that is not available in the design codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.