Abstract

The static and dynamic properties of skyrmions have recently received increased attention due to the potential application of skyrmions as information carriers and for unconventional computing. While the current-driven dynamics has been explored deeply, both theoretically and experimentally, the theory of temperature gradient-induced dynamics---skyrmion caloritronics---is still at its early stages of development. Here, we move the topic forward by identifying the role of entropic torques due to the temperature dependence of magnetic parameters. Our results show that skyrmions move towards higher temperatures in single-layer ferromagnets with interfacial Dzyaloshinski-Moriya interactions, whereas, in multilayers, they move to lower temperatures. We analytically and numerically demonstrate that the opposite behaviors are due to different scaling relations of the material parameters as well as a non-negligible magnetostatic field gradient in multilayers. We also find a spatially dependent skyrmion Hall angle in multilayers hosting hybrid skyrmions due to variations of the thickness-dependent chirality as the skyrmion moves along the temperature gradient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.