Abstract

An obvious temperature gradient is apparent when engine exhaust gas with low mass flow and a high temperature passes through a thermoelectric generator system to recover thermal energy. Aiming to explore the temperature gradient characteristics and its effect on optimal thermoelectric performance in an exhaust power-generation system, a nonisothermal thermoelectric numerical model was developed using the finite-element method. A commercial-type thermoelectric material was used in the numerical calculation. When the maximum net power was obtained, the corresponding temperature-gradient characteristics under different exhaust mass flow rates and temperatures were examined for an exhaust power-generation system. Moreover, the optimal structural dimensions and maximum net power were investigated with consideration of the temperature dependence of the physical properties of the thermoelectric materials. Additionally, different finite-element conditions were compared to obtain an effective calculation method. The results indicated that the temperature gradient is significantly affected by the exhaust temperature but not the mass flow rate and a linearly increases with an exhaust temperature increase by introducing fitting correlations. Constant physical thermoelectric parameters can be used when the qualitative operating temperature of the semiconductor material is suitably chosen. It is recommended to use one commercial thermoelectric module as one finite calculation element instead of using one PN couple, because this facilitates convenient and high-precision calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.