Abstract

Considering the poor lubricating effect of cryogenic air (CA) and inadequate cooling ability of nanofluid minimum quantity lubrication (NMQL), this work proposes a new manufacturing technique cryogenic air nanofluid minimum quantity lubrication (CNMQL). A heat transfer coefficient and a finite difference model under different grinding conditions were established based on the theory of boiling heat transfer and conduction. The temperature field in the grinding zone under different cooling conditions was simulated. Results showed that CNMQL exerts the optimal cooling effect, followed by CA and NMQL. On the basis of model simulation, experimental verification of the surface grinding temperature field under cooling conditions of CA, MQL, and CNMQL was conducted with Ti–6Al–4V as the workpiece material. Simultaneously, CNMQL exhibits the smallest specific tangential and normal grinding forces (2.17 and 2.66 N/mm, respectively). Further, the lowest grinding temperature (155.9 °C) was also obtained, which verified the excellent cooling and heat transfer capabilities of CNMQL grinding. Furthermore, the experimental results were in agreement with theoretical analysis, thereby validating the accuracy of the theoretical model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call