Abstract
Laser quenching is usually performed on a localized area of workpiece surfaces through a certain thermal cycle. As a result, the treated area possesses improved mechanical properties. The quality of the treatment results depends on the selection of laser process parameters, which relies on the knowledge of the temperature field caused by laser heating. This paper reports a model for the evaluation of the laser-induced thermal field. This model assumes a laser beam of uniform intensity and considers the effect of the base temperature on the total temperature. Surface temperatures were computed and compared for different scanning velocities and laser spot sizes. The analyses indicate that the temperature in later-heated areas is much higher than that in earlier-heated areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.