Abstract

The change law of the temperature field of an open-graded friction course (OGFC) asphalt pavement was studied. The thermal conductivity of OGFC asphalt mixtures with different oil–stone ratios was measured using a thermal-conductivity tester. The relationship between the oil–stone ratio and thermal conductivity was established, which was then used as the boundary condition of the temperature field. Using mathematical and physical methods based on thermodynamics and heat-transfer principles, an analytical solution of the temperature field of the OGFC asphalt pavement structure was developed. Data from an outdoor test of large Marshall specimens were compared with the analytical solution of the temperature field to verify the correctness of the model. The results show that the analytical model of the OGFC asphalt pavement structure temperature field can predict the temperature changes at different oil–stone ratios, times, and depths (from the road surface). The differences between the predicted results and test data at 0.01, 0.02, and 0.03 m from the road surface were 0.5, 0.7, and 0.9 °C, respectively, confirming that this study can be used to provide reference information for the design of OGFC asphalt pavement structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call