Abstract

Computational screening of adsorbent materials often uses the Henry's law constant (KH) (at a particular temperature) as a first discriminator metric due to its relative ease of calculation. The isosteric heat of adsorption in the limit of zero pressure (qst∞) is often calculated along with the Henry's law constant, and both properties are informative metrics of adsorbent material performance at low-pressure conditions. In this article, we introduce a method for extrapolating KH as a function of temperature, using series-expansion coefficients that are easily computed at the same time as KH itself; the extrapolation function also yields qst∞. The extrapolation is highly accurate over a wide range of temperatures when the basis temperature is sufficiently high, for a wide range of adsorbent materials and adsorbate gases. Various results suggest that the extrapolation is accurate when the extrapolation range in inverse-temperature space is limited to |β - β0 | < 0.5 mol/kJ. Application of the extrapolation to a large set of materials is shown to be successful provided that KH is not extremely large and/or the extrapolation coefficients converge satisfactorily. The extrapolation is also able to predict qst∞ for a system that shows an unusually large temperature dependence. The work provides a robust method for predicting KH and qst∞ over a wide range of industrially relevant temperatures with minimal effort beyond that necessary to compute those properties at a single temperature, which facilitates the addition of practical operating (or processing) conditions to computational screening exercises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.