Abstract

We have investigated the temperature evolution of magnetism and its interrelation with structural parameters in the perovskite-based layered compound Sr2IrO4, which is believed to be a Jeff = 1/2 Mott insulator. The structural distortion plays an important role in this material and induces a weak ferromagnetism in an otherwise antiferromagnetically ordered magnetic state with a transition temperature around 240 K. Interestingly, at low temperatures, below around 100 K, a change in the magnetic moment has been observed. Temperature dependent x-ray diffraction measurements show that sudden changes in structural parameters around 100 K are responsible for this. Resistivity measurements show insulating behavior throughout the temperature range across the magnetic phase transition. The electronic transport can be described with Mott's two-dimensional variable range hopping (VRH) mechanism, however, three different temperature ranges are found for VRH, which is a result of varying the localization length with temperature. A negative magnetoresistance (MR) has been observed at all temperatures in contrast to positive behavior generally observed in strongly spin-orbit coupled materials. The quadratic field dependence of MR implies the relevance of a quantum interference effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.